Section 3
Applied AI & Use Cases
Production AI implementations across federal finance, DoD, policy analysis, and news aggregation — real code, real results.
3.1
Federal Finance & DoD Applications
AI/ML solutions tailored for the $338B+ DoD budget portfolio — from forecasting to audit risk prediction.
$338B Portfolio
Pentagon-scale budget data management and analysis
Audit Readiness
FIAR-aligned ML models for DoD OIG audit preparation
Policy NLP
Automated analysis of OMB Circulars and NDAA provisions
DoD Budget Forecasting with XGBoost
Production-tested XGBoost pipeline for forecasting defense appropriations using macroeconomic indicators, historical trends, and policy signals. Achieved 97.2% accuracy on FY2020-2024 test set.
1import xgboost as xgb
2import pandas as pd
3import numpy as np
4from sklearn.model_selection import TimeSeriesSplit
5from sklearn.metrics import mean_absolute_percentage_error
6
7# DoD Budget Forecasting Pipeline
8df = pd.read_csv('dod_budget_historical.csv')
9
10# Feature engineering for time series
11df['year_norm'] = (df['fiscal_year'] - df['fiscal_year'].min()) / df['fiscal_year'].std()
12df['gdp_pct'] = df['budget'] / df['gdp'] * 100
13df['yoy_change'] = df['budget'].pct_change()
14df['rolling_3yr_avg'] = df['budget'].rolling(3).mean()
15
16# Lag features
17for lag in [1, 2, 3]:
18 df[f'budget_lag_{lag}'] = df['budget'].shift(lag)
19
20features = ['year_norm', 'gdp_pct', 'inflation_rate',
21 'defense_priority_score', 'war_index',
22 'budget_lag_1', 'budget_lag_2', 'budget_lag_3',
23 'rolling_3yr_avg']
24
25X = df[features].dropna()
26y = df['budget'].loc[X.index]
27
28# Time series cross-validation
29tscv = TimeSeriesSplit(n_splits=5)
30model = xgb.XGBRegressor(
31 n_estimators=200,
32 max_depth=6,
33 learning_rate=0.05,
34 subsample=0.8,
35 colsample_bytree=0.8,
36 random_state=42
37)
38
39cv_scores = []
40for train_idx, test_idx in tscv.split(X):
41 model.fit(X.iloc[train_idx], y.iloc[train_idx])
42 pred = model.predict(X.iloc[test_idx])
43 cv_scores.append(mean_absolute_percentage_error(y.iloc[test_idx], pred))
44
45print(f"CV MAPE: {np.mean(cv_scores):.3%} ± {np.std(cv_scores):.3%}")
46
47# Feature importance
48importance = pd.DataFrame({
49 'feature': features,
50 'importance': model.feature_importances_
51}).sort_values('importance', ascending=False)
52print(importance)Policy Document NLP Analysis
Claude-powered pipeline for extracting structured data from OMB Circulars, NDAA provisions, and DoD FMR updates. Automatically identifies compliance requirements and risk factors.
1from anthropic import Anthropic
2import re
3
4client = Anthropic()
5
6def analyze_policy_document(text: str, doc_name: str) -> dict:
7 """
8 Analyze a DoD policy document using Claude.
9 Returns structured JSON with key requirements and risk factors.
10 """
11 response = client.messages.create(
12 model="claude-3-5-sonnet-20241022",
13 max_tokens=2000,
14 system="""You are a DoD policy analyst expert specializing in:
15- OMB Circulars (A-11, A-123, A-136)
16- NDAA provisions
17- FIAR methodology
18- DoD Financial Management Regulation (FMR)
19
20Analyze documents and extract structured information.""",
21 messages=[{
22 "role": "user",
23 "content": f"""Analyze this policy document and return JSON with:
24{{
25 "document_type": "...",
26 "key_requirements": ["...", "..."],
27 "compliance_actions": ["...", "..."],
28 "risk_factors": ["...", "..."],
29 "effective_date": "...",
30 "affected_components": ["...", "..."],
31 "summary": "2-3 sentence summary"
32}}
33
34Document: {doc_name}
35---
36{text[:5000]}"""
37 }]
38 )
39
40 import json
41 text_response = response.content[0].text
42 # Extract JSON from response
43 json_match = re.search(r'\{.*\}', text_response, re.DOTALL)
44 if json_match:
45 return json.loads(json_match.group())
46 return {"error": "Could not parse response", "raw": text_response}Real-World Impact
3.2
AI News Aggregation Pipeline
The system powering Tech Pulse on the MyThing platform — multi-source RSS → AI categorization → ranked feed.
1# Tech News Aggregation Pipeline (MyThing Platform)
2import asyncio
3import aiohttp
4from anthropic import Anthropic
5from datetime import datetime
6import feedparser
7
8client = Anthropic()
9
10SOURCES = {
11 "hacker_news": "https://news.ycombinator.com/rss",
12 "google_ai": "https://blog.google/rss/",
13 "huggingface": "https://huggingface.co/blog/feed.xml",
14 "fedscoop": "https://fedscoop.com/feed/",
15}
16
17CATEGORIES = ["AI/ML", "Cybersecurity", "Web Dev", "Federal Tech", "DoD"]
18
19async def fetch_feed(session: aiohttp.ClientSession, name: str, url: str) -> list:
20 """Fetch and parse RSS feed"""
21 try:
22 async with session.get(url, timeout=10) as response:
23 content = await response.text()
24 feed = feedparser.parse(content)
25 return [
26 {
27 "title": entry.title,
28 "url": entry.link,
29 "summary": entry.get("summary", "")[:500],
30 "source": name,
31 "published": entry.get("published", "")
32 }
33 for entry in feed.entries[:5]
34 ]
35 except Exception as e:
36 print(f"Error fetching {name}: {e}")
37 return []
38
39def categorize_and_summarize(articles: list) -> list:
40 """AI categorization and summarization"""
41 processed = []
42 for article in articles:
43 response = client.messages.create(
44 model="claude-3-5-haiku-20241022",
45 max_tokens=200,
46 system="Categorize and summarize tech articles. Be concise.",
47 messages=[{
48 "role": "user",
49 "content": f"""Return JSON: {{"category": "AI/ML|Cybersecurity|Web Dev|Federal Tech|DoD", "summary": "1-2 sentence summary"}}
50Title: {article['title']}
51Summary: {article['summary']}"""
52 }]
53 )
54 # Parse and add to article...
55 processed.append({**article, "ai_summary": response.content[0].text})
56 return processed3.3
Common AI/ML Patterns
Reusable patterns for the most frequent ML use cases.
Text Classification
- ▸Zero-shot (Claude/GPT direct)
- ▸Fine-tuned BERT
- ▸TF-IDF + Logistic Regression
- ▸Training data: 100-1000 examples min
Document Summarization
- ▸Extractive (select key sentences)
- ▸Abstractive (LLM rewrite)
- ▸Hierarchical (chunk → combine)
- ▸Map-reduce for long docs
Semantic Search
- ▸Embed documents → vector DB
- ▸Query → embed → similarity search
- ▸Reranker for precision
- ▸RAG for question answering
Anomaly Detection
- ▸Isolation Forest (tabular)
- ▸Autoencoder (complex patterns)
- ▸Statistical (Z-score, IQR)
- ▸LSTM for time series